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Introduction: context of this project

Project: minimize the weight of a structure under shakedown: make
the solid as light as possible still keeping a shakedown behaviour.

Problem settings
Solid ⌦ elastoplastic

I boundary @⌦ = @⌦
F

[ @⌦0 [ � of normal n
I @⌦

F

: non-optimizable
I @⌦0: partially optimizable
I �: optimizable

@⌦0 \ @⌦
F

= ;; @⌦
F

\ � = ;; � \ @⌦0 = ;

I elastoplasticity characterised by the Von Mises function f and the
yield stress �

Y

by the elastoplastic stresses: {� s.t. f (�)  �
Y

}
Problem reductions

I 2 dimensions.

I Loading: one cyclic load F , cycling between 0 and F
max

.
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Framework

I The shakedown constraint

I Optimization algorithm

I Preliminary results and future work
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The shakedown constraint
Characterizing shakedown (21):

I Following the loading history

I Direct methods

) Lower-Bound Theorem
vxx↵fcxv(Melan, Koiter, Köenig)

Condition for shakedown (13,12,11):

A structure, ⌦, will shakedown if there exists a stress field, �, such that:
Z

⌦
(� � �e(⌦)) : e(⇣)d⌦ = 0 8⇣ 2 V

8 x 2 ⌦ f (� � �e(⌦)) (x)  �
Y

f (�) (x)  �
Y

(1)

with �e(⌦) the fictitious elastic stress caused by the load F
max

and

V =
n

v 2 H1(⌦)d st v = 0 on @⌦0

o

(2)
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The shakedown constraint

Di�culties: � doesn’t result from an easy PDE formulation (not even
unique).

Idea: Set � as an unknown:

min
⌦ 2 U
�, �e 2 C 0(D,S2(R)))

J(⌦,�) =

Z

⌦
d⌦

st

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

R

⌦(� � �e) : e(⇣)d⌦ = 0 8⇣ 2 V

8 x 2 ⌦ f ((� � �e) (x))  �
Y

f (�) (x)  �
Y

�e the fictitious elastic stress caused by the loadF
max

(3)

6 / 23



The shakedown constraint

Simplifications

I Pointwise condition (8x) hard to consider ) global constraints:

Z

⌦
(f (� � �e) (x)� �

Y

) d⌦  0
Z

⌦
(f (�) (x)� �

Y

) d⌦  0
(4)

I Avoiding a shape with no solid (14): minimize until volume=0
change the objective function adding the compliance*small coe�cient
) rigidity still needed:

J(⌦) =

Z

⌦
d⌦+ l ⇤

Z

⌦
Ae(ue : e(ue))d⌦ (5)
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The shakedown constraint

Simplifications

I fictitious elastic displacement ue results from a PDE equivalent to a
variational problem:

8v 2 V = {v 2 H1(⌦) st v = 0 on @⌦0}

8v 2 V = {v 2
Z

⌦
Ae(ue(⌦)) : e(v)d⌦ =

Z

@⌦
F

F
max

vds
(6)

Stress found using Hooke’s law: �e = Ae(ue)�e = Ae(ue)�e = Ae(ue).
With:

A⇠ = 2µ⇠ + �(Tr⇠)I2

e : u ! e(u) =
@
x

u
x

(@
x

u

y

+@
y

u

x

)
2

(@
x

u

y

+@
y

u

x

)
2 @

y

u
y

Introducing the solution ue(⌦) and �e(⌦) of this elastic problem )
elimination of the elastic constraint.
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The shakedown constraint

Final formulation

Objective Function:
volume+l*compliance

self-equilibrating condition

averaged safe-state
conditions

with:

elastic variational problem
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Framework

I The shakedown constraint

I Optimization algorithm

I Preliminary results and future work
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Optimization algorithm

min
⌦ 2 U
� 2 C 0(D,S2(R))

J(⌦,�) =

Z

⌦
d⌦+ l ⇤

Z

⌦
Ae(ue(⌦) : e(ue(⌦))d⌦

st

8

>

>

>

>

<

>

>

>

>

:

R

⌦(� � �e(⌦)) : e(⇣)d⌦ = 0 8⇣ 2 V

R

⌦ (f (�)� �
Y

) d⌦  0

R

⌦ (f (� � �e(⌦))� �
Y

) d⌦  0

with

Z

⌦
Ae(ue(⌦)) : e(v)d⌦ =

Z

@⌦
F

F
max

vds 8 v 2 V

2 issues:

I Dealing with the constraints: Augmented Lagrangian Method

I Updating the shape: Level-set method
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Optimization algorithm
Augmented Lagrangian Method (ALM)(5,15)

I Type of problems considered

min
x

f (x) st

⇢

c
e

(x) = 0
c
i

(x) � 0
(7)

I Penalization of contraints: transformed problem

min
x

LALM(x ,�
e

,�
i

;µ) = f (x)�
X

l

�l
e

c l
e

(x) +
1

2µ

X

l

(c l
e

(x))2

min
x

LALM(x ,�
e

,�
i

;µ) = f (x) +
X

j

 (c j
i

(x),�j
i

;µ)

with  (t,�;µ) =

⇢

��t + 1
2µ t

2 if t � µ�  0

�µ
2�

2 otherwise

(8)

I Updating the multipliers (with x
k

minimizer of LALM at iteration k.)

�k+1
e

= �k
e

� c
e

(x
k

)µ; �k+1
i

= max

✓

�k
i

� c
i

(x
k

)

µ

◆

(9)
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Optimization algorithm
Dealing with the constraints

I inequality constraints handled with to the ALM.
I equality constraint not handled with the ALM: ⇣ is already a Lagrange

multiplier, giving the required degree of freedom.

New optimization problem
I New objective function

LALM(⌦,�,�1,�2, ⇣;µ) =

Z

⌦
d⌦+ l ⇤

Z

⌦
Ae(ue(⌦) : e(ue(⌦))d⌦

LALM(⌦) +

Z

⌦
(� � �e(⌦)) : e(⇣)d⌦+  

✓

�
Z

⌦
(f (�)� �

Y

) d⌦,�1;µ

◆

LALM(⌦, l) +  

✓

�
Z

⌦
(f (� � �e(⌦))� �

Y

) d⌦,�2;µ

◆

(10)
I New optimization problem

min
⌦,�,�1,�2, ⇣

LALM(⌦,�,�1,�2, ⇣;µ) (11)
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Optimization algorithm
Karush-Kuhn-Tucker (KKT) necessary condition for an optimum:
If X = (⌦,�,�1,�2, ⇣), KKT condition: rLALM(X ) = 0

@⌦LALM = 0 @�1L
ALM = 0 @�2L

ALM = 0
@�LALM = 0 @⇣LALM = 0

(12)

Iterative algorithm to make LALM decrease (at iteration k)

�k+1 = �k � @�L
ALM(X k) ⇤ step,

⇣k+1 = ⇣k � @⇣L
ALM(X k) ⇤ step,

�k+1
1 = max

✓

�k1 +
1

r

Z

⌦
(f (�)� �0) d⌦, 0

◆

(from theALM),

�k+1
2 = max

✓

�k2 +
1

r

Z

⌦
(f (� � �e(⌦))� �0) d⌦, 0

◆

(from theALM),

⌦k+1
actualized by the level-setmethodwith velocityV

⌦k+1with @⌦L
ALM(X k) =

Z

@⌦
V ✓.nds

(13)
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Optimization algorithm
Level-set method (2,3,4,14)

Shape, ⌦, represented by a function �:

8

>

<

>

:

�(x) = 0 x 2 @⌦ \ D

�(x) < 0 x 2 ⌦

�(x) > 0 x 2 D \ ⌦
(14)

Evolution of �: Hamilton-Jacobi
equation

@
t

�+ V | r� |= 0 (15)

No need to remesh. At each iteration,
”picture” of the shape

) Shape Capturing

Velocity, V , determined by the objective
function’s shape derivative. 15 / 23



Algorithm

I Set the Finite Element Formulation

I Choose all the parameters
I Model: elasticity parameters, ...
I Finite Element Formulation: number of elements, ...
I Optimization coe�cient: maximum number of iterations, ...
I Coe�cient for the compliance l

I Initialize the variables: X 0

I Iterative algorithm:
I while kLALM

old

� LALMk > precision do
I

choose a step

I
from iteration k, compute the variables at k+1

I end do

I check that the final shape satisfies the shakedown conditions.
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Preliminary results and future work
Elastic optimization

Volume:
0.347

I inequality constraint satisfied:
the average of Von Mises
function in the solid is under the
yield stress

Z

⌦
f (�e)� �

Y

d⌦  0

Shakedown optimization

Volume:
0.301

I inequality constraint satisfied:
the averaged safe-state
conditions are satisfied
Z

⌦
(f (�)� �

Y

) d⌦  0
Z

⌦
(f (� � �e(⌦))� �

Y

) d⌦  0

I equality constraint:
Z

⌦
(� � �e(⌦)) : e(⇣)d⌦

= �0.198822
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Preliminary results and future work

Short-term work

I Check the first results + keep on testing to finish debugging the code

I Adjusting the di↵erent parameters:
I initialization
I descent step
I coe�cient about compliance

I Modifying the algorithm to respect the shakedown constraint for each
shape found during the iterative process (by optimizing the other
parameters)
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Preliminary results and future work

Long-term work

Simplifications during the optimization

I global consideration of the safe-state constraints to be changed:

8x 2 ⌦, f (�) (x)� �
Y

 0 )
Z

⌦
(f (�) (x)� �

Y

) d⌦  0

Assumptions while setting the problem

I structure in 2D here ) 3D

I 1 cyclic load ) N cyclic loads

I cyclic load ) constant + cyclic load

I volumetric loads and temperature gradients
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PROOF OF LOWER BOUND SHAKEDOWN THEOREM

CONTENTS

• Assumptions and preliminary concepts
• Principle of virtual work
• Principle of maximum plastic resistance

• Melan’s lower bound shakedown theorem

• Proof of Melan’s theorem



Assumptions:
• All deformations are small and strain field can be derived from deformations as:

• Body forces (Χ𝑖) and surface tractions (𝑝𝑖) can vary arbitrarily and independently.

• Loads are applied sufficiently slowly so that dynamic effects can be neglected.

Preliminary concepts: Principle of virtual work
• Equilibrium condition is given by the Principle of virtual work:

 Χ𝑖 𝑢𝑖𝑑𝜈 +  𝑝𝑖 𝑢𝑖𝑑𝑠 =  𝜎𝑖𝑗 𝜀𝑖𝑗𝑑𝜈

𝜀𝑖𝑗 =
1
2 𝑢𝑖,𝑗 + 𝑢𝑗,𝑖 .

• which holds for all kinematically admissible strain distributions.



Preliminary concepts: Principle of maximum plastic resistance [1]

• Assume 𝜎𝑖𝑗 is a stress state which creates plastic deformation in a structure. 
Principle of maximum plastic resistance states that, this stress state (𝜎𝑖𝑗) gives 
an increment of work that exceeds or equals the work which would be done by 
a stress state within or at the yield limit (𝜎𝑖𝑗𝑎):

𝜎𝑖𝑗 − 𝜎𝑖𝑗𝑎  𝜀𝑖𝑗′′ ≥ 0

𝜎𝑖𝑗𝑎: Allowable stress state within or at the yield limit

𝜀𝑖𝑗′′ : Plastic strain caused by 𝜎𝑖𝑗



Melan’s Lower Bound Shakedown Theorem [2,3]: 

• Actual stresses in a plastically deformed body may be written as the sum of 
fictitious elastic stresses (𝜎𝑖𝑗∗ ) and residual stresses (𝜌𝑖𝑗) caused by plastic 
deformation.

• If any system of residual stresses can be found such that sum of fictitious elastic 
stresses and residual stresses constitutes a safe state of stress at every point of 
the structure and for all possible load combinations, then structure will 
shakedown and subsequent loads will be carried in a purely elastic manner.

𝜎𝑖𝑗 = 𝜎𝑖𝑗∗ + 𝜌𝑖𝑗



Proof of Melan’s Theorem:

• Consider a fictitious strain energy associated with the difference between actual 
residual stress field (𝜌𝑖𝑗) and residual stress field that is assumed to satisfy the 
theorem (  𝜌𝑖𝑗).

• where 𝜀𝑖𝑗𝑟′ is the elastic strain field corresponding with residual stresses. 

• Time derivative of 𝐴 is (see additional slides for detailed steps):

• Note that actual strains in the structure is a combination of elastic and plastic 
strains such that:

𝐴 = 1
2 𝜌𝑖𝑗 −  𝜌𝑖𝑗 𝜀𝑖𝑗𝑟′ −  𝜀𝑖𝑗𝑟′ 𝑑𝜈

 𝐴 =  𝜌𝑖𝑗 −  𝜌𝑖𝑗  𝜀𝑖𝑗𝑟′ 𝑑𝜈

𝜀𝑖𝑗 = 𝜀𝑖𝑗′ + 𝜀𝑖𝑗′′ = 𝜀𝑖𝑗∗ + 𝜀𝑖𝑗𝑟′ + 𝜀𝑖𝑗′′

Elastic 
strain

Plastic
strain

Elastic strain
due to fictitious
elastic stress

Elastic strain
due to residual
stress

Plastic
strain



Proof of Melan’s Theorem (cont'd.):

• Substituting the time derivative of elastic strain due to residual stress we have:

which can be rewritten as: 

• Since 𝜌𝑖𝑗 −  𝜌𝑖𝑗 is a self equilibrating stress state and  𝜀𝑖𝑗 −  𝜀𝑖𝑗𝑟∗ is 
kinematically admissible since it is derived by subtraction of two kinematically
admissible strain fields, Principle of Virtual Work asserts that: 

 𝐴 =  𝜌𝑖𝑗 −  𝜌𝑖𝑗  𝜀𝑖𝑗 −  𝜀𝑖𝑗𝑟∗ −  𝜀𝑖𝑗′′ 𝑑𝜈

 𝐴 =  𝜌𝑖𝑗 −  𝜌𝑖𝑗  𝜀𝑖𝑗 −  𝜀𝑖𝑗𝑟∗ 𝑑𝜈 −  𝜌𝑖𝑗 −  𝜌𝑖𝑗  𝜀𝑖𝑗′′ 𝑑𝜈

 𝜌𝑖𝑗 −  𝜌𝑖𝑗  𝜀𝑖𝑗 −  𝜀𝑖𝑗𝑟∗ 𝑑𝜈 = 0



Proof of Melan’s Theorem (cont'd.):

• Time derivative of fictitious strain energy becomes:

• Recall from the theorem that actual stresses may be written as the sum of 
fictitious elastic stresses (𝜎𝑖𝑗∗ ) and residual stresses (𝜌𝑖𝑗) caused by plastic 
deformation which results in:

and the residual stress that is assumed to satisfy the theorem can be written as: 

where 𝜎𝑖𝑗𝑎 is the allowable stress state assumed to exist according to the theorem.

• Substituting these residual stress definitions in the above gives:

 𝐴 = − 𝜌𝑖𝑗 −  𝜌𝑖𝑗  𝜀𝑖𝑗′′ 𝑑𝜈

𝜌𝑖𝑗 = 𝜎𝑖𝑗 − 𝜎𝑖𝑗∗

 𝜌𝑖𝑗 = 𝜎𝑖𝑗𝑎 − 𝜎𝑖𝑗∗

 𝐴 = − 𝜎𝑖𝑗 − 𝜎𝑖𝑗𝑠  𝜀𝑖𝑗′′ 𝑑𝜈



Proof of Melan’s Theorem (cont'd.):

• On the account of principle of maximum plastic resistance [ 𝜎𝑖𝑗 − 𝜎𝑖𝑗𝑎  𝜀𝑖𝑗′′ ≥ 0]
this equation states that time derivative of fictitious strain energy (  𝐴) is negative 
whenever plastic deformation exists.

• However 𝐴 has to be positive, because strain energy density is always positive 
or zero [1]. These can only be satisfied simultaneously if either plastic strain rate 
vanishes or 𝜎𝑖𝑗 − 𝜎𝑖𝑗𝑠 is zero. In either case the structure must shakedown to an 
elastic state.

 𝐴 = − 𝜎𝑖𝑗 − 𝜎𝑖𝑗𝑠  𝜀𝑖𝑗′′ 𝑑𝜈
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