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Introduction: context of this project

Project: minimize the weight of a structure under shakedown: make
the solid as light as possible still keeping a shakedown behaviour.

Problem settings
Solid Q elastoplastic

» boundary 0Q2 = 0QrF U 9Qo UT of normal n
» 0CQFr: non-optimizable
> 0€Qq: partially optimizable
» [ optimizable

8QoﬂaQF=@; 0Nl =0; rﬁaQozm

» elastoplasticity characterised by the Von Mises function f and the
yield stress oy by the elastoplastic stresses: {os.t. f(0) <oy}

Problem reductions

» 2 dimensions.

» Loading: one cyclic load F, cycling between 0 and Fj,.x.



Framework

» The shakedown constraint

» Optimization algorithm

» Preliminary results and future work
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The shakedown constraint
Characterizing shakedown (21):

» Following the loading history =>  Lower-Bound Theorem
» Direct methods (Melan, Koiter, Kdenig)

Condition for shakedown (13:12,11).

A structure, Q, will shakedown if there exists a stress field, o, such that:

/Q(a _ %) () =0 Ve eV

Vx e floc—0%(Q))(x) <oy (1)
f(o)(x) <oy

with 0¢() the fictitious elastic stress caused by the load Fp,,x and

vz{veHl(Q)dstv:oOnaQO} (2)



The shakedown constraint

Difficulties: o doesn't result from an easy PDE formulation (not even
unique).

Idea: Set o as an unknown:

min J(Q,0) = / dQ
Qe U Q
g, o° € CO(D7S2(R)))

o Vx e f((c —0°)(x)) <oy

o€ thefictitious elastic stress caused by the load Fp;ax
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The shakedown constraint

Simplifications

» Pointwise condition (¥x) hard to consider = global constraints:
/Q(f(a—ae) (x) — o) dQ < 0
(@)@ -ovan<o

» Avoiding a shape with no solid (1*): minimize until volume=0

change the objective function adding the compliance*small coefficient
= rigidity still needed:

J(Q) = /QdQ + I /QAe(ue e(u))d2 (5)



The shakedown constraint

Simplifications
» fictitious elastic displacement u€ results from a PDE equivalent to a
variational problem:

YveV={veH(Q)stv=00n00)}
/ Ae(u®(2)) : e(v)dQ = / Fmaxvds
Q

00

(6)

Stress found using Hooke's law:  ¢® = Ae(u®).

With:
A = 206 + N(Tr€)
e U e(u) _ 8XUX (axuygayux)
’ (8xuy;8y“><) ay uy

Introducing the solution u¢(£2) and o¢(2) of this elastic problem =
elimination of the elastic constraint.



The shakedown constraint

Final formulation

minJ(Q,0) = / dQ +I>)</ Ae(u®() : e(u®(2))dQ2
Q Q

Qe U

o e C%D,S:(R))

Jolo —a%(Q)) s e()dQ =0  V(eV
st § Jo(f(e)—oy)d2 <0
Jo (Fa —a°(Q)) —oy)dQ2 <0

with:

/ Ae(u®(R)) : e(v)dQ = f Fraxvds YveV
Q a0F

Objective Function:
volume+I*compliance

self-equilibrating condition

averaged safe-state
conditions

elastic variational problem
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Optimization algorithm

9 min J(Q,0) = /QdQ + /% /QAe(ue(Q) :e(u®(Q2))dQ
o € CO(D,S(R))
Jolo—0¢()) :e(()d2=0 VCeV
st Jo(f(o) —0oy)dQ <0

Jo (f(o —0°(Q)) —oy)dQ2 <0

with / Ae(u®(Q): e(V)dQ = [ Froevds Vve V
Q o0

2 issues:
» Dealing with the constraints: Augmented Lagrangian Method
» Updating the shape: Level-set method
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Optimization algorithm
Augmented Lagrangian Method (ALM)(:19)
» Type of problems considered

min £ (x) st{ z(()f)); 8 (7)

X

» Penalization of contraints: transformed problem

mlnLALM(X Aes A i) = f(x ZAI IX)+ Z( L(x))?
+Zw 1(x). M) (8)

_ —ot+ £ t2 ift—po <0
with w(t,g;lu) = { _ZO;_ 2p / JUeRS
2

otherwise

» Updating the multipliers (with x, minimizer of LALM at iteration k.)

Ml AR = max (- S)

12/23



Optimization algorithm
Dealing with the constraints

> inequality constraints handled with to the ALM.
> equality constraint not handled with the ALM: ( is already a Lagrange
multiplier, giving the required degree of freedom.

New optimization problem
» New objective function

LALM(Q,U,AI,AQ,QM):/dQ+/*/Ae(u6(Q)  e(u%(Q))dQ
Q Q
+/Q(a—ae(9)) ; e(C)dQ+1/J(—/Q(f(a)—ay)dQ,)q;M>

+ ¢ (—/ (f(oc — () —oy) dQ, Ao; M)
Q
(10)
> New optimization problem

min LAM(Q, 0, A1, Mo, G ) (11)
Q,0,\1,72,¢
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Optimization algorithm

Karush-Kuhn-Tucker (KKT) necessary condition for an optimum:
If X = (,0,A1,A2,(), KKT condition: VLALM(X) =0

doLAM = 0 O\ LAM =0 §),LAM =
OC,LALM =0 aCLALM =0 (12)

Iterative algorithm to make L'V decrease (at iteration k)
okt = ok — 9, 1AM(XK) « step,

Ck+1 _ Ck _ aCLALM(Xk) * step,
AHL = max (/\’1‘ + % / (F(0) = 00) A2, o) (from the ALM),
Q

1
)\’2‘“‘1 = max ()\’2‘ + r/ (f(c — o%(Q)) — 00) dQ,O> (from the ALM),
Q

Q 1 actualized by the level-set method with velocity V

with dLAM(X*) = / V0.nds
o0Q



Optimization algorithm
Level-set method (2:34:14)

Shape, €2, represented by a function ¢:

p(x)=0 xe€oQNnD
d(x) <0 xeQ (14)
?(x) >0 xeD\Q

Evolution of ¢: Hamilton-Jacobi
equation

Oep+ V | Ve |=0 (15)

No need to remesh. At each iteration,
" picture” of the shape
= Shape Capturing

Velocity, V/, determined by the objective
function’s shape derivative.

Shape tracking

Shape capturing
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Algorithm

» Set the Finite Element Formulation

» Choose all the parameters
» Model: elasticity parameters, ...
» Finite Element Formulation: number of elements, ...
» Optimization coefficient: maximum number of iterations, ...
» Coefficient for the compliance /
» Initialize the variables: X°
> lIterative algorithm:
» while || LAEM — LAIM|| > precision do
> choose a step
> from iteration k, compute the variables at k+1
» end do
» check that the final shape satisfies the shakedown conditions.
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Preliminary results and future work

Elastic optimization Shakedown optimization
Volume: Volume:
0.347 0.301
> inequality constraint satisfied: > inequality constraint satisfied:
the average of Von Mises the averaged safe-state
function in the solid is under the conditions are satisfied
yield stress / (f(O’) . Uy)dQ <0
Q
f(0°)—oyd2 <0
/Q (0°) —oyd < / (F(o — 0%(Q)) — oy)dQ < 0

> equality constraint:

/Q(U —0%(Q)) : e(¢)dQ2
= —0.198822
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Preliminary results and future work

Short-term work

» Check the first results + keep on testing to finish debugging the code

» Adjusting the different parameters:
> initialization
» descent step
» coefficient about compliance

» Modifying the algorithm to respect the shakedown constraint for each

shape found during the iterative process (by optimizing the other
parameters)
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Preliminary results and future work

Long-term work

Simplifications during the optimization

» global consideration of the safe-state constraints to be changed:

VxeQ, f(o)(x)—oy<0 = / )(x) —oy)dQ2 <0

Assumptions while setting the problem

» structure in 2D here = 3D
> 1 cyclic load = N cyclic loads
» cyclic load = constant + cyclic load

» volumetric loads and temperature gradients

20/23



References

[1] Grégoire Allaire. Numerical analysis and optimization: an introduction to mathematical mod-
elling and numerical simulation. Oxford University Press, 2007.

2

Grégoire Allaire and Frangois Jouve. Minimum stress optimal design with the level set method.
Engineering analysis with boundary elements, 32(11):909-918, 2008.

3

Grégoire Allaire, Francois Jouve, and Anca-Maria Toader. Structural optimization using sen-
sitivity analysis and a level-set method. Journal of computational physics, 194(1):363-393,
2004.

[4

Grégoire Allaire and Marc Schoenauer. Conception optimale de structures, volume 58. Springer,
2007.

[5

Dimitri P Bertsekas. Constrained optimization and Lagrange multiplier methods. Academic
press, 2014.

6
[7

Allan F Bower. Applied mechanics of solids. CRC press, 2009.

J Bree. Plastic deformation of a closed tube due to interaction of pressure stresses and cyclic
thermal stresses. International journal of mechanical sciences, 31(11):865-892, 1989.

B

Giovanni Garcea and Leonardo Leonetti. Decomposition methods and strain driven algorithms
for limit and shakedown analysis. In Limit State of Materials and Structures, pages 19-43.
Springer, 2013.

[9

Xu Guo, Wei Sheng Zhang, Michael Yu Wang, and Peng Wei. Stress-related topology opti-
mization via level set approach. Computer Methods in Applied Mechanics and Engineering,
200(47):3439-3452, 2011.

21/23



References

(10]

(1]

(12]

13]

(14]

(15]

[16]

(17]

(18]

Anton Mario Bongio Karrman and Grégoire Allaire. Structural optimization using sensitivity
analysis and a level-set method, in scilab and matlab. 2009.

Warner Tjardus Koiter. General theorems for elastic-plastic solids. North-Holland Amsterdam,
1960.

Jan A Konig. Shakedown of elastic-plastic structures, volume 7. Elsevier, 2012.

Ernst Melan. Der Spannungszustand eines" Mises-Hencky’schen"” Kontinuums bei verdnder-
licher Belastung. Holder-Pichler-Tempsky in Komm., 1938.

Georgios Michailidis. Manufacturing constraints and multi-phase shape and topology optimiza-
tion via a level-set method. PhD thesis, Ecole Polytechnique X, 2014.

Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business
Media, 2006.

Stanley Osher and James A Sethian. Fronts propagating with curvature-dependent speed:
algorithms based on hamilton-jacobi formulations. Journal of computational physics, 79(1):12—
49, 1988.

J-W Simon and D Weichert. Interior-point method for lower bound shakedown analysis of
von mises-type materials. In Limit State of Materials and Structures, pages 103-128. Springer,
2013.

Michael Yu Wang, Xiaoming Wang, and Dongming Guo. A level set method for structural
topology optimization. Computer methods in applied mechanics and engineering, 192(1):227—
246, 2003.

22/23



References

[19] K Wiechmann and E Stein. Shape optimization for elasto-plastic deformation under shakedown
conditions. International journal of solids and structures, 43(22):7145-7165, 2006.

[20] Qi Xia, Tielin Shi, Shiyuan Liu, and Michael Yu Wang. A level set solution to the stress-based
structural shape and topology optimization. Computers & Structures, 90:55-64, 2012.

[21] N. Vermaak, M. Boissier, L. Valdevit, R. M. McMeeking, "Some Graphical Interpretations of

Melan’s Theorem for Shakedown Design" In: Direct Methods of Structural Analysis, Editors:
Alan Cocks, Olga Barrera, Alan Ponter, Springer 2016 (Submitted).

23/23



PROOF OF LOWER BOUND SHAKEDOWN THEOREM

CONTENTS

* Assumptions and preliminary concepts

* Principle of virtual work
* Principle of maximum plastic resistance

e Melan’s lower bound shakedown theorem

 Proof of Melan’s theorem



Assumptions:

 All deformations are small and strain field can be derived from deformations as:

1
&ij =5 (uij + ).

* Body forces (X;) and surface tractions (p;) can vary arbitrarily and independently.

* Loads are applied sufficiently slowly so that dynamic effects can be neglected.

Preliminary concepts: Principle of virtual work

* Equilibrium condition is given by the Principle of virtual work:

inuidV‘Fin uidS =f0'ij El’jdV

which holds for all kinematically admissible strain distributions.



Preliminary concepts: Principle of maximum plastic resistance [1]

* Assume gj; is a stress state which creates plastic deformation in a structure.
Principle of maximum plastic resistance states that, this stress state (o;;) gives

an increment of work that exceeds or equals the work which would be done by
a stress state within or at the yield limit (g;;_):

(GLJ O-l]a)gl] =0

.- Allowable stress state within or at the yield limit

] : Plastic strain caused by o;;



Melan’s Lower Bound Shakedown Theorem [2,3]:

e Actual stresses in a plastically deformed body may be written as the sum of
fictitious elastic stresses (al-*j) and residual stresses (p;;) caused by plastic

deformation.

%
Oij = Oj; T Pij

* |f any system of residual stresses can be found such that sum of fictitious elastic
stresses and residual stresses constitutes a safe state of stress at every point of
the structure and for all possible load combinations, then structure will
shakedown and subsequent loads will be carried in a purely elastic manner.



Proof of Melan’s Theorem:

* Consider a fictitious strain energy associated with the difference between actual
residual stress field (p;;) and residual stress field that is assumed to satisfy the

theorem (p;;).

1
A=7 f (pij — pij)(eij, — &;,) dv

where ei'jr is the elastic strain field corresponding with residual stresses.

* Time derivative of A is (see additional slides for detailed steps):
A= f (pij — Pij)éij, dv

* Note that actual strains in the structure is a combination of elastic and plastic
strains such that:
gj=¢&jtej=¢;te; te;

Elastic Plastic  Elastic strain Elastic strain Plastic
strain strain due to fictitious due to residual strain
elastic stress stress



Proof of Melan’s Theorem (cont'd.):

* Substituting the time derivative of elastic strain due to residual stress we have:

A= J (pij — pij)(&ij — &, — &ij) dv
which can be rewritten as:
A= j (pij — pij) (& — &5j,.) dv — f (pij = Pi)(€if) dv
* Since (pij — ﬁij) is a self equilibrating stress state and (éij — éfjr) is

kinematically admissible since it is derived by subtraction of two kinematically
admissible strain fields, Principle of Virtual Work asserts that:

f (pij = pij) (& — &j,) dv =10



Proof of Melan’s Theorem (cont'd.):

* Time derivative of fictitious strain energy becomes:

A=~ ](pij — pij)éijdv

e Recall from the theorem that actual stresses may be written as the sum of
fictitious elastic stresses (Ul-*j) and residual stresses (p;;) caused by plastic

deformation which results in:

— *
Pij = 0ij — 0jj

and the residual stress that is assumed to satisfy the theorem can be written as:
Pij = Oij, — 03

where g;;_is the allowable stress state assumed to exist according to the theorem.

* Substituting these residual stress definitions in the above gives:

A = —j(O'ij - O-l]s)gl,]’ dv



Proof of Melan’s Theorem (cont'd.):

_[(0” 0ij, )e" dv

* On the account of principle of maximum plastic resistance [(al-] O'U )EU > 0]

this equation states that time derivative of fictitious strain energy (4) is negative
whenever plastic deformation exists.

* However A has to be positive, because strain energy density is always positive
or zero [1]. These can only be satisfied simultaneously if either plastic strain rate
vanishes or 0;; — 0;;_is zero. In either case the structure must shakedown to an

elastic state.
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