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Some Graphical Interpretations of Melan’s
Theorem for Shakedown Design

N. Vermaak, M. Boissier, L.Valdevit and R. M. McMeeking

Abstract Bree Interaction Diagrams have long been one of the major visual design1

guides for employing and evaluating shakedown in engineering applications. These2

diagrams provide representations of the realms in which elastoplastic behaviors,3

including shakedown, are found for a material and structure under variable loads.4

The creation of these diagrams often relies upon some combination of upper or5

lower bound shakedown theorems and numerical shakedown limit determination6

techniques. Part of the utility of these diagrams is that, for a given structure and7

loading conditions, inspecting them is sufficient to determine whether shakedown8

will occur or not. The diagrams cannot however, give the designer insight into how9

the conditions for shakedown are met. This chapter presents some graphical inter-10

pretations of one of the common methods for shakedown determination: the use11

of Melan’s Lower Bound Theorem. The intent is to provide additional insight for12

designers regarding how shakedown conditions are satisfied. In this way, additional13

directions for modifying designs to recover shakedown behavior may also be iden-14

tified. Revisiting this well-established theorem from a graphical and pedagogical15

approach, also provides a foundation for interdisciplinary innovation. The particular16

focus is on simple examples that highlight ways in which Melan’s theorem may be17

applied to shakedown design problems.18
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2 N. Vermaak et al.

1 Introduction19

While shakedown concepts, limit theorems, and numerical methods have been devel-20

oped since the 1920s and 1930s [1–5], their widespread acceptance and applica-21

tion in engineering design communities remains limited [5]. Some of the factors22

that would promote more widespread use of shakedown concepts and limit theo-23

rems include improving awareness through educational materials, more experimen-24

tal validation efforts, and enhanced communication of shakedown benefits to dif-25

ferent design communities. This chapter presents graphical interpretations of shake-26

down concepts with the intent to provide additional insight and understanding while27

complementing existing graphical shakedown design tools.28

Within the context of plastic design under variable loads, shakedown limit the-29

orems have been used in applications ranging from: vessels for demilitarization of30

munitions [6], tribology [7], multilayer semiconductor devices [8], pavement design31

[9, 10], shape memory alloy components [11–13], to nuclear pressure vessels [5].32

The theorems delineate the boundaries between reliable and inadmissible behav-33

iors [14–17] (see top of Fig. 1). The theorems often replace traditional yield-limited34

assessments of structural integrity and can be used in the design process to evalu-35

ate a structure’s response to unanticipated loads. The operational space is extended36

by allowing shakedown to occur, whereby stresses locally exceed the yield strength37

of a material in the first few cycles of load and thereafter, fully elastic response is38

recovered.39

More generally, the range of possible structural responses is often illustrated40

through the use of a Bree Interaction Diagram, which indicates combinations of loads41

that lead to various material and structural behaviors. Figure 1 illustrates the classic42

Bree diagram for a thin-walled cylinder (with a radius, R and thickness, t), subjected43

to a fixed internal pressure and a cyclic radial temperature difference [14]. The ordi-44

nate is ΔT∕ΔTo where ΔTo is the temperature difference required for yield initiation45

(𝜎Y ) in the absence of a mechanical load
(
ΔTo = 2 (1 − 𝜈) 𝜎Y∕E𝛼

)
; the abscissa is46

P/Po with Po being the pressure that causes yielding in the absence of a tempera-47

ture gradient
(
𝜎Y = PoR∕t

)
. E, 𝛼, 𝜈 are the material Young’s modulus, coefficient of48

thermal expansion, and Poisson’s ratio, respectively. The elastic domain is defined by49

P/Po + ΔT∕ΔTo < 1. At one extreme, wherein P/Po > 1, plastic collapse occurs on50

the first load cycle, i.e. the thin wall experiences complete yielding. For intermediate51

combinations of P and ΔT, one of three behaviors is obtained (Fig. 1) [18]. (i) In the52

shakedown regime, localized plastic deformation that occurs in the early stages of53

cycling gives rise to residual stresses that stabilize the plastic response. Purely elastic54

behavior results during any further loading cycles. (ii) Alternating plasticity occurs55

by loading beyond the shakedown limit. Here the plastic strain increment obtained56

during the first half of each loading cycle is balanced by a plastic strain increment of57

equal magnitude but opposite sign during the second half of the loading cycle. No58

net strain accrues during each cycle but the structure ultimately fails by low-cycle59

fatigue. (iii) Ratchetting refers to the condition in which a net increment of plastic60

strain accumulates during each cycle, eventually causing rupture.61
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Some Graphical Interpretations of Melan’s Theorem for Shakedown Design 3

Fig. 1 a Prototypical stress-strain behaviors for an elastic-plastic material in the classic Bree prob-

lem and b the corresponding analytic Bree diagram. A cylindrical vessel is subject to constant

internal pressure and a cyclic thermal gradient through the wall thickness

The creation of these diagrams often relies upon some combination of upper or62

lower bound shakedown theorems and numerical shakedown limit determination63

techniques. The utility of interaction diagrams such as Fig. 1 is immediately appar-64

ent; for an engineering application, designers may easily assess the benefits of allow-65

ing shakedown to occur. The interaction diagrams cannot however, give the designer66

insight into how the conditions for shakedown are met. This chapter presents some67

graphical interpretations of one of the common methods for shakedown determi-68

nation: the use of Melan’s Lower Bound Theorem under small deformation theory69

assumptions (from Koiter [19]):70
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4 N. Vermaak et al.

If any time-independent distribution of residual stresses, �̄�ij, can be found such that the sum71

of these residual stresses and the “elastic” stresses, 𝜎
e
ij, is a safe state of stress 𝜎

e
ij + �̄�ij = 𝜎

s
ij,72

i.e. a state of stress inside the yield limit, at every point of the body and for all possible73

load combinations within the prescribed bounds, then the structure will shake down to some74

time-independent distribution of residual stresses (usually depending on the actual loading75

program), and the response to subsequent load variations within the prescribed limits will76

be elastic. On the other hand, shakedown is impossible if no time-independent distribution77

of residual stresses can be found with the property that the sum of the residual stresses and78

“elastic” stresses is an allowable state of stress at every point of the body and for all possible79

load combinations.80

In other words, to assure that a structure will shakedown, one has to find a resid-81

ual stress field, 𝝆, that satisfies the following three conditions: (i) it has to be self-82

equilibrating, (ii) it has to be time-independent, and (iii) it has to remain within the83

yield limit when combined with any fictitious “elastic” stress caused by a load com-84

bination from the loading domain. This powerful theorem gives a necessary and85

sufficient condition to determine if a structure will shakedown or not. One of the86

major advantages of this theorem and this kind of “Direct Method” is that informa-87

tion about the loading path in an arbitrarily complex loading space is not needed.88

Rigorous bounds and shakedown predictions can be made based on purely elastic89

solutions or simplified elastoplastic calculations [19–31]. In contrast, the “classical90

load history approach” follows the incremental or step-by-step evolution of a system91

and finds the actual residual stress field that would result from the actual loading92

history that is deterministically known. Direct Methods, which historically devel-93

oped out of necessity and without access to computational tools, typically take a94

more mathematical approach to predict shakedown response [5]. It should be noted95

that “classical incremental or load history approaches” and “direct methods” are not96

competing methods, but rather complementary as each provides different informa-97

tion and functionality and they often have separate domains of applicability. For98

example, direct methods avoid cumbersome incremental load-history based calcu-99

lations and are especially useful when the exact loading history within a domain100

is unknown. Whereas the load-history based approaches provide the often crucial101

evolution of local quantities.102

Several versions of proofs of Melan’s lower bound theorem can be found in the103

literature [19–21, 32] and many extensions of this theorem have been made to ana-104

lyze temperature or time-dependent properties, creep, damage, and others [5, 33,105

34]. Many ways to implement Melan’s theorem to determine shakedown behav-106

ior or shakedown limit loads have also been developed; see Weichert and Ponter107

[5] for a broad historical survey. One way to think about the techniques for lower-108

bound shakedown determination is by emphasizing “any” in the first part of the109

limit theorem (“If any time-independent distribution of residual stresses, �̄�ij, can110

be found...”). How could one find appropriate residual stress fields? Direct methods111

exploit the mathematical freedom available by searching for “any” residual stress112

field that meets the specified shakedown conditions; to do this, direct methods use a113

variety of procedures from graph theory to optimization [22, 35–43].114
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Some Graphical Interpretations of Melan’s Theorem for Shakedown Design 5

In this work, two different direct method implementations of Melan’s theorem for115

shakedown determination are considered. The goal is to illustrate graphically what116

is mathematically determined when an admissible residual stress field, 𝝆, is sought117

and the conditions for a structure to shakedown are met. The graphical interpreta-118

tions also provide a way to understand the role of key parameters and features in the119

shakedown determination process. Revisiting this well-established theorem from a120

graphical and pedagogical approach, also provides a foundation for interdisciplinary121

innovation. In the following, Sect. 2 will present the background and assumptions of122

the problems analyzed. Sections 3 and 4 present several examples. Discussion of the123

assumptions and limitations is presented in Sect. 5 and followed by conclusions.124

2 Setting of the Problem125

Consider an elastic-perfectly-plastic solid, Ω, under small deformation theory126

assumptions. Its boundary, 𝜕Ω, characterized by its normal, n, can be described in127

parts (Fig. 2): 𝜕Ω0 is the part of the boundary on which displacement is imposed,128

𝜕ΩF is the part of the boundary on which any traction, F, from the prescribed load-129

ing domain, L (Fig. 3), could be applied, and Γ is the part of the boundary that is130

traction-free. These parts satisfy the conditions:131

𝜕Ω = 𝜕Ω0 ∪ 𝜕ΩF ∪ Γ,
𝜕Ω0 ∩ 𝜕ΩF = ∅, 𝜕Ω0 ∩ 𝜕Γ = ∅, 𝜕ΩF ∩ 𝜕Γ = ∅.

(1)132

In the following, a constant scalar yield stress, 𝜎Y , is considered and a von Mises yield133

function, f , is adopted. As a result of a load, P, applied to a solid, Ω, on the part 𝜕ΩF,134

two types of stresses will be distinguished: (i) the actual stresses, 𝜎
P
actual, these are the135

elastoplastic stresses that would be caused by the load (under the elastic-perfectly-136

plastic model); (ii) the fictitious “elastic” stresses, 𝜎
P
e,fict, these are the stresses that137

would be caused by the load if the response were purely elastic.138

Fig. 2 Schematic of

structure and problem

parameters
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6 N. Vermaak et al.

Fig. 3 Loading domains, L

Lastly, the loading domain, L, assumed (Fig. 3) contains every possible load-139

ing combination for the loads applied to the solid. By assuming that L is a con-140

vex N-dimensional polyhedron [44], it is possible to define the loading corners,141

Fi, (i ∈ �1,NC� where NC is the number of corners) of the loading domain, and142

every loading path that connects one corner to another will remain inside the load-143

ing domain. Note that all problems considered involve loading by tractions, forces or144

displacements and no thermal stresses are considered. We therefore keep tempera-145

ture constant and uniform throughout the examples presented. As a result, two types146

of loading domains, L, can be considered: only cyclic loads and combined cyclic147

and constant loads (Fig. 3). For example, at the bottom of Fig. 3, a combined cyclic148

and constant loading domain is illustrated. It is composed of the loads Q(t) (cycling149

between Q1 and Q2) and T(t) (cycling between T1 and T2). It should be noted that for150

this analysis, the constant load, P, will be restricted to cause purely elastic response151

in the structure, so that the actual stress it causes is equivalent to the fictitious “elas-152

tic” stress.153

For the remainder of this work and using the translations and adaptations of Koi-154

ter, Symonds, and König [3, 4, 19, 20, 32], the following formulation of Melan’s155

lower bound shakedown theorem is adopted: A solid, Ω (Fig. 2), which is subjected156

to any cyclic traction F, from the loading domain L, (Fig. 3) on a part 𝜕ΩF of its157

boundary 𝜕Ω, will shakedown under this loading domain if one can find any resid-158

ual stress field, 𝝆, which:159
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Some Graphical Interpretations of Melan’s Theorem for Shakedown Design 7

∙ Condition 1 (spatial) is self-equilibrating, meaning that its divergence over the160

solid, Ω, is zero and the field satisfies the prescribed traction-free conditions on161

the solid’s boundary, 𝜕ΩF ∪ Γ (with the normal, n, Fig. 2) [21]:162

div(𝝆) = 0 in Ω,
𝝆 ⋅ n = 0 on 𝜕ΩF ∪ Γ.

(2)163

∙ Condition 2 (pointwise) is time-independent, meaning that its value at each point164

does not depend on the applied loading corner, Fi (∀i ∈ �1,NC�), in the loading165

domain L, (note that 𝝆i is the field corresponding to loading corner, Fi):166

∀i ∈ �1,NC�, 𝝆i = 𝝆. (3)167

∙ Condition 3 (pointwise) will generate a safe state of stress at each point, x, in the168

solid (x ∈ Ω) when it is added to a fictitious “elastic” stress 𝜎
Fi
e,fict, associated with169

any of the loading corners, Fi (∀i ∈ �1,NC�), in the loading domain L. For a yield170

function, f , and a yield stress, 𝜎Y , this gives:171

∀ x ∈ Ω, ∀ i ∈ �1,NC�, f (𝝆(x) + 𝜎
Fi
e,fict(x), 𝜎Y ) ≤ 0. (4)172

The conditions have been labeled as pointwise or spatially-dependent (spatial) to173

highlight differences for use in the following sections. Unlike Conditions 2 and 3174

which only have to be satisfied at each point, Condition 1 links all of the points in175

the solid together through the divergence term and the boundary conditions.176

3 Graphical Interpretations of Shakedown Determination177

with Simplified Elastoplastic Analysis178

One approach to finding appropriate residual stress fields for use in Melan’s theorem179

is to use simplified elastoplastic analysis [22–31]. Instead of incrementally follow-180

ing an entire cyclic loading history, a single elastoplastic analysis for one cycle that181

includes both loading and unloading could be used to calculate a representative resid-182

ual stress field,𝝆, developed in a solid,Ω. Then, the residual stress field,𝝆, is checked183

so that when it is added to the fictitious “elastic” stresses that would be caused by184

the same loading process, the sum will remain below the yield level. For more than185

one cyclic load application (or more than one cyclic load combined with constant186

loads), the time-independent condition (Eq. 3) is not automatically satisfied. For the187

following examples, simplified two-corner loading domains (Fig. 4) will be used so188

that only one path—the one connecting the two corners—has to be analyzed.189

In this shakedown determination with a simplified elastoplastic analysis approach,190

a first step is to compute the residual stress field from loading and unloading the solid,191

and verify that the self-equilibrating condition is met (Eq. 2). First, the constant load,192
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8 N. Vermaak et al.

Fig. 4 Loading domain

P, is applied; this elicits an actual stress which is also the fictitious “elastic” stress193

(Sect. 2): 𝜎
P
actual = 𝜎

P
e,fict. At this stage, the load applied to the structure is the load194

corresponding to the first loading corner, P = F1. Then, the cyclic load ΔP is applied195

and the structure is fully loaded (the sum of the constant load, P and the extremum196

value of the cyclic load, ΔP). This corresponds to the second loading corner, F2. The197

stress, 𝜎
P+ΔP
actual , is now different from the fictitious “elastic” stress, 𝜎

P+ΔP
e,fict . This new198

fictitious “elastic” stress, 𝜎
P+ΔP
e,fict , can be related to the stress caused by the constant199

load, 𝜎
P
e,fict (linearly elastic): 𝜎

P+ΔP
e,fict = 𝜎

P
e,fict + 𝜎

ΔP
e,fict.200

The residual stress field, 𝝆, is computed by completely unloading the solid: the201

total fictitious “elastic” stress, 𝜎
P+ΔP
e,fict is subtracted from the total stress, 𝜎

P+ΔP
actual :202

𝝆 = 𝜎
P+ΔP
actual − 𝜎

P+ΔP
e,fict . (5)203

The residual stress field, 𝝆, by definition, is automatically self-equilibrating as204

demonstrated in the following. The stress field, 𝜎
P+ΔP
actual , resulting from the applied205

load P + ΔP, satisfies the equilibrium equations (see Fig. 2):206

div
(
𝜎

P+ΔP
actual

)
= 0 in Ω

𝜎
P+ΔP
actual ⋅ n = P + ΔP on 𝜕ΩF

𝜎
P+ΔP
actual ⋅ n = 0 on Γ

(6)207

The fictitious “elastic” stress field, 𝜎
P+ΔP
e,fict , satisfies the same equations, as it is the208

stress induced by the same loading, P + ΔP, but assuming purely elastic behavior:209

div
(
𝜎

P+ΔP
e,fict

)
= 0 in Ω

𝜎
P+ΔP
e,fict ⋅ n = P + ΔP on 𝜕ΩF

𝜎
P+ΔP
e,fict ⋅ n = 0 on Γ

(7)210

Since the divergence and the scalar product are linear operators, the nullity of the211

divergence of the residual stress field and the traction-free conditions are ensured212

by:213
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Some Graphical Interpretations of Melan’s Theorem for Shakedown Design 9

div(𝝆) = div
(
𝜎

P+ΔP
actual

)
− div

(
𝜎

P+ΔP
e,fict

)
= 0 in Ω

𝝆 ⋅ n = 𝜎
P+ΔP
actual ⋅ n − 𝜎

P+ΔP
e,fict ⋅ n = P + ΔP = 0 on 𝜕ΩF

𝝆 ⋅ n = 𝜎
P+ΔP
actual ⋅ n − 𝜎

P+ΔP
e,fict ⋅ n = 0 on Γ

(8)214

As the solid, Ω, is elastic-perfectly-plastic, the stress, 𝜎
P+ΔP
actual , cannot go beyond215

the yield limit. One only needs to check that the residual stress field is “safe”, mean-216

ing that at each point, the residual stress remains below the yield level. In order to217

illustrate this approach for shakedown determination and gain more insight from a218

design perspective, a graphical interpretation is presented.219

3.1 Example for Combined Cyclic and Constant Loading220

Consider a two-component stress state and a von Mises yield function represented221

as a circle in a S1, S2 plane. In this plane, adding and removing stresses can be rep-222

resented by adding and subtracting vectors; S1, S2 are stress components and the223

plane is not necessarily in principal stress axes. Once the stresses, 𝜎
F
actual(x), reach224

the yield limit, they remain at yield on the circle until unloading. For the illustrations225

presented, only abstract schematic representations are used.226

It has been shown above that the residual stress is self-equilibrating. Before con-227

sidering the following step, a modified stress field, �̃�, is defined for convenience as228

the sum of the residual stress field (𝝆, Eq. 5) with the fictitious “elastic” stress caused229

by the constant load only, 𝜎
P
e,fict. This stress is the one remaining in the solid, Ω, after230

only unloading the cyclic load ΔP:231

�̃� = 𝝆 + 𝜎
P
e,fict. (9)232

The time-independence condition is also automatically satisfied. Once computed, the233

residual stress (𝝆, Eq. 5) will not change. Finally, the safe-state condition has only to234

be checked for the loading corners, at each point, x, in the solid. For F1 = P:235

∀ x ∈ Ω, f
(
𝝆(x) + 𝜎

P
e,fict(x), 𝜎Y

)
≤ 0 (10)236

and for F2 = P + ΔP:237

∀ x ∈ Ω, f
(
𝝆(x) + 𝜎

P+ΔP
e,fict (x), 𝜎Y

)
= f

(
𝜎

P+ΔP
actual (x), 𝜎Y

)
≤ 0 (11)238

Equation 11 is automatically satisfied because the solid is elastic-perfectly-plastic.239

From this point, the safe-state condition must be checked for the modified stress240

field, �̃�, (Eq. 9).241
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10 N. Vermaak et al.

Fig. 5 Schematic illustration of direct method shakedown determination using simplified elasto-

plastic analysis. For a two-component stress state at a point (x), and for a combined cyclic and

constant loading case (Fig. 4): shakedown is possible (on the left); shakedown is not possible (on

the right)

For a two-component stress state at a point x, Fig. 5 illustrates cases where shake-242

down is and is not possible. If shakedown is not possible at a single point in the243

structure, shakedown is prevented for the entire structure. In these figures, the thin244

solid lines represent the elastic stresses that result from the applied constant load245

(𝜎
P
e,fict

(
x
)
). Following the application of the constant load, an additional cyclic load is246

then applied and the resulting fictitious “elastic” stresses are shown by the sparsely-247

dotted (𝜎
ΔP
e,fict

(
x
)
). The actual elastoplastic stresses are depicted by thicker dashed248

lines (𝜎
Fa,b
actual

(
x
)
) and overlap both the sparsely-dotted and thin solid lines within the249

elastic domain. The thick dashed lines for the actual elastoplastic stresses follow the250

yield surface (circle) when the yield limit is reached and the load is increased. Upon251

unloading (elastically), the fictitious “elastic” stress is subtracted from the actual252

elastoplastic stress (𝜎
Fa,b
actual

(
x
)
− 𝜎

ΔP
e,fict

(
x
)
). Note that only the cyclic load (and the253

associated fictitious “elastic” stresses) is removed and the constant load still remains.254

This process is represented by the densely-dotted line (𝜎
ΔP
unload

(
x
)
). The thick solid255

lines show the modified stresses �̃�
(
x
)
= 𝝆

(
x
)
+ 𝜎

P
e,fict

(
x
)
, (Eq. 9). One could argue256

that although the residual stress found in this way is not necessarily one that allows257

for shakedown to occur, it could still be possible to find another residual stress that258

would allow for shakedown. However, the particularity of this approach is that it259

gives the actual residual stress field that would be caused by the loading and unload-260

ing process. If this residual stress field does not allow for shakedown, then the struc-261

ture will not shakedown. In this versatile approach, a natural ordering of the steps262

to check the shakedown conditions is suggested by following the physical processes263

of loading and unloading that the structure experiences. Many other approaches are264

even more divorced from physical processes and exploit the mathematical freedom in265

Melan’s theorem. Nevertheless, following this process could provide valuable insight266

for designers regarding how to recover or promote shakedown behavior.267
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Some Graphical Interpretations of Melan’s Theorem for Shakedown Design 11

4 Graphical Interpretations of Shakedown Determination268

with Purely Elastic Analysis269

An example of a more mathematical implementation of Melan’s theorem uses set270

theory and can consider the shakedown conditions simultaneously. This kind of271

approach can also be used to identify new pathways to incorporate shakedown the-272

orems in modern structural topology optimization protocols [45–49]. For the fol-273

lowing example, a solid Ω (Fig. 2), and a cyclic loading domain, L, that includes274

0 as a loading corner are analyzed (Fig. 3). For ease of understanding, the “point-275

wise” (time-independence and safe-state) shakedown conditions (Sect. 2) are pre-276

sented together; the “spatial” (self-equilibrating) condition is applied last.277

For each point, x, in the solid (x ∈ Ω), a feasible stress domain (for this point),278

f .d.(x), must be found, i.e. all of the stresses s̄(x) that, for all loading corners Fi279

(∀i ∈ �1,NC�), satisfy the safe-state condition. The stresses, s̄(x), are also time-280

independent because they are load-independent: they do not depend on the loading281

corner and remain the same for the whole loading domain, L. Note that the new282

variable, s̄(x) is defined for convenience to distinguish stresses that only satisfy the283

pointwise shakedown conditions (s̄(x)) from those that satisfy both the pointwise284

and spatial shakedown conditions (admissible residual stress fields, 𝝆). Then, for a285

point in the solid (x ∈ Ω), the feasible stress domain (which will be called a feasible286

domain from now on, f .d.(x)), is composed of the stresses, s̄(x), satisfying:287

∀ i ∈ �1,NC�, f (s̄(x) + 𝜎
Fi
e,fict(x), 𝜎Y ) ≤ 0. (12)288

For each point, the feasible domain f .d.(x) can be represented in a stress coordi-289

nate system (Fig. 6). Care should be taken to ensure that the same stress coordinate290

system is used for all of the loading corners. Moreover, the stress coordinate system291

must also remain the same for the feasible domains at every point in the solid. As a292

result, the feasible domains, f .d.(x), are not necessarily determined in principal stress293

axes as principal stress components depend on the applied loading and they may not294

be the same for each loading corner and each point in the solid.295

With a feasible domain for each point in the solid, combining these domains in296

space will limit the admissible stress fields. The combination of feasible domains297

(f .d.(x)) gives a “feasible stress field domain” (for the entire structure). It is done in298

a space of dimension (number of stress components) + (number of spatial dimen-299

Fig. 6 Schematic of a

feasible domain for a point,

f .d.(x), with feasible stress

values. Left example for a

single stress component.

Right example for a

two-component stress

340845_1_En_11_Chapter ✓ TYPESET DISK LE ✓ CP Disp.:25/5/2017 Pages: 21 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

12 N. Vermaak et al.

Fig. 7 Schematic illustration of the variation of feasible domains at various points in a structure.

Each feasible domain, f .d.(x), is drawn at the spatial coordinates of the point in the structure and

extends along stress component axes (S1, S2). The representation of an admissible stress field, 𝝆,

in the space of dimension (number of stress components) + (number of spatial dimensions) must

remain within the boundaries set by the variation of feasible domains in the solid (i.e. the feasible

stress field domain). Two possibilities for 𝝆 are given: the example with the solid line (𝝆1) belongs

to the feasible stress field domain whereas the example with the dotted line (𝝆2) does not

sions): one axis for each stress component and one axis for each spatial direction. In300

this space, the feasible domain for each point (x), is drawn at the spatial coordinates301

of the point in the solid and extends along stress component axes (Fig. 7).302

To meet both the pointwise and spatial conditions (Eqs. 2–4, Sect. 2), an admis-303

sible stress field, 𝝆, is found in the intersection of the self-equilibrating stress fields304

and the feasible stress field domain. Thus, the representation of an admissible stress305

field, 𝝆, in the space of dimension (number of stress components) + (number of spa-306

tial dimensions) must remain within the boundaries set by the variation of feasible307

domains in the solid (i.e. the feasible stress field domain) (see schematic in Fig. 7).308

For ease of visualization, only the satisfaction of the divergence equation is shown;309

additional boundary conditions would further limit the admissible fields, 𝝆, within310

the feasible stress field domain. This “intersection of domains” approach is useful311

for both understanding and designing to shakedown. Modifications of the material,312

geometric, and problem parameters will change these two domains: reducing, enlarg-313

ing, translating them and affecting the size and existence of the intersection zone in314

which the admissible residual stress fields, 𝝆, reside.315

4.1 Example for only Cyclic Loading316

To schematically illustrate this kind of implementation of Melan’s theorem, a four-317

corner cyclic loading domain, L (Fig. 3), is used. The simplified example assumes318

a linear yield function, f , and a one-dimensional structure, Ω, that experiences a319

single-component stress. To represent this problem in a continuous way, one would320

have to consider the pointwise shakedown conditions (Eqs. 3 and 4) at each point in321

the solid. In this example, only three points (x1, x2, x3) are analyzed. The fictitious322
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Some Graphical Interpretations of Melan’s Theorem for Shakedown Design 13

Fig. 8 Feasible domain (f.d.) for point x1

“elastic” stresses caused by the loading corner (F1, F2, F3, or F4 = 0), for these points323

in the structure are 𝜎
Fi
e,fict(x1), 𝜎

Fi
e,fict(x2), and 𝜎

Fi
e,fict(x3).324

A schematic case where shakedown is possible is illustrated. The feasible325

domains, f .d.(x), at each point in the solid (x ∈ Ω) must be computed (Figs. 8, 9326

and 10). These computations rely on analytical elasticity solutions or on approxima-327

tions using finite element analysis. For the examples below, only abstract schemat-328

ics are presented. The safe-state condition has to be satisfied for all four loading329

corners (F1, F2, F3, F4 = 0). The feasible domain for the points analyzed in the330

structure (x1, x2, x3) is determined when the sum of the fictitious “elastic” stresses,331

𝜎
F1
e,fict 𝜎

F2
e,fict 𝜎

F3
e,fict 𝜎

F4
e,fict and s̄(x) (Eq. 12) remain elastic.332

Within each of the Figs. 8, 9 and 10 (and for each corresponding point x1, x2, x3),333

there are several linear plots: one indicating the feasible domain for each of the load-334

ing corners (F1, F2, F3, F4 = 0) and a final plot that shows the feasible domain for335

the point (x1, x2 or x3), which is the intersection of all of the feasible domains for336

each of the loading corners. The fictitious “elastic” stresses are computed for each337
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14 N. Vermaak et al.

Fig. 9 Feasible domain (f.d.) for point x2

loading corner and are represented by dashed vectors along linear stress continuums.338

These plots also illustrate the yielding limits (using a von Mises function f (𝜎) = 𝜎)339

in tension (𝜎 = 𝜎Y ) and compression (𝜎 = −𝜎Y ). The feasible domain (f .d.(x) for340

Fi) is represented by thick black lines. This domain is the translation of the elas-341

tic domain ([−𝜎Y , 𝜎Y ]) by the fictitious elastic stress (−𝜎Fi
e,fict(x)), i.e. in the opposite342

direction and with the same magnitude. This translation is shown by the dotted lines343

at the boundaries of the elastic domain. Note that for the loading corner F4 = 0, (no344

external loading), there are no associated fictitious elastic stresses and the translated345

elastic domain is the original elastic domain.346

Combining the final feasible domains in space for each point in the structure347

(x ∈ Ω)—for example, placing them side by side along a spatial axis, allows one to348

visualize the limitations on the feasible stress field domain (Fig. 11). For the exam-349

ple presented here, it is assumed that, for points between those considered, the limits350

of their feasible domains will also fall linearly between the determined limits. For351

more general problems, finite element approximations and mesh sensitivity stud-352

ies are needed. With Fig. 11, the self-equilibrating condition can be applied to find353
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Some Graphical Interpretations of Melan’s Theorem for Shakedown Design 15

Fig. 10 Feasible domain (f.d.) for point x3

the admissible stress field, 𝝆, (i.e. enforcing the nullity of the divergence and the354

traction-free state on the part of the boundary 𝜕ΩF ∪ Γ):355

div(𝝆) = 𝜕𝝆(x)
𝜕x

= 0 inΩ, ⇒ 𝝆 = constant inΩ. (13)356

For this example, the divergence equation requires one to find a constant function,357

𝝆, which, for each point of the solid (x ∈ Ω), would remain in the feasible domain:358

∃𝝆 ∈ ℝ s.t. ∀ x ∈ Ω, 𝝆(x) = 𝝆 ∈ f .d.(x), (14)359

The self-equilibrating shakedown condition (Eq. 2) does not always require a con-360

stant residual stress field 𝝆 (Fig. 7).361

Figure 11 shows that, for this schematic example, one can find some shakedown362

solutions (on the left, in the middle). In this way one assures that the whole structure,363
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16 N. Vermaak et al.

Fig. 11 Left feasible stress field domain from the combination of each point’s feasible domain.

Middle the same feasible stress field domain is shown with the self-equilibrating condition that

indicates shakedown is possible. Right example of a possible feasible stress field domain where the

intersection with the self-equilibrating fields is empty and shakedown is not possible

Ω, will shakedown under the applied loading domain, L. In contrast, one can imagine364

an alternative scenario for which there is no constant function (i) that will satisfy the365

self-equilibrating condition and (ii) that is also a member of the feasible stress field366

domain; thus shakedown is not possible (Fig. 11, on the right).367

This example highlights several factors that could prevent shakedown for a struc-368

ture; these factors present design opportunities to recover shakedown behavior. An369

empty feasible domain for a single point in the structure will prevent shakedown for370

the entire structure (the feasible domain for point x1 in Figs. 8 and 9 could have been371

empty and then shakedown would not be possible for the structure). The feasible372

domain for a point may be empty due to the magnitude of stress levels associated373

with a single loading corner (i.e. greater than 2𝜎Y in this example), or because the374

combination of feasible domains for each loading corner yields an empty set when375

combined for the final feasible domain determination at a point. Shakedown may376

also be prevented due to an empty feasible stress field domain. This failure relates to377

the “spatial” self-equilibrating shakedown condition: in these examples, the condi-378

tion requires one to find a constant function that would remain in the feasible domain379

for every point in the solid (Fig. 11). As a lower bound for a structure, if it is found380

that shakedown is not possible for a loading corner within a given loading domain,381

L, then shakedown is also not possible for the entire loading domain.382

For this kind of implementation of Melan’s theorem, an example has been given383

to illustrate the set theory approach. It is a search for the intersection of stress fields384

that are admissible from pointwise and spatial-condition perspectives. It should be385

again emphasized that this kind of implementation does not require any elastoplastic386

analysis, it is based purely on elastic solutions. However, it will not provide infor-387

mation about the residual stress state, 𝝆, that actually exists in the solid. Indeed, the388

uniqueness of the residual stress field is derived from the load history [19] which is389

not considered in direct methods.390
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Some Graphical Interpretations of Melan’s Theorem for Shakedown Design 17

5 Discussion391

The graphical interpretations and approaches presented for some implementations of392

Melan’s Lower Bound Shakedown Theorem offer tools for deeper understanding and393

for making design choices. The mathematical processes used in methods for shake-394

down determination are often buried in computational codes. However, as is the case395

with many graphical representations in 2D and 3D, their practical utility is limited396

and the graphical tools presented are not intended to replace other tools nor are they397

recommended for complex geometries or loading domains. Nevertheless, the graph-398

ical tools offer complementary information to traditional Bree Interaction Diagrams.399

Bree diagrams give bounds for elastoplastic responses (including shakedown) under400

prescribed loading combinations but they do not indicate how shakedown condi-401

tions are met. By elucidating how pointwise and spatial shakedown conditions are402

met, directions for promoting and recovering shakedown behavior that are not indi-403

cated in the Bree Diagrams may be highlighted. These may include modifications404

of the material, geometry, and boundary conditions. Even for obvious changes such405

as increasing the material yield strength, interaction diagrams will give the revised406

shakedown domain, but the graphical approach and interpretations presented here407

allow one to see how and why this parameter influences the shakedown domain from408

a lower-bound perspective.409

In the previous examples, several simplifying assumptions were made such as410

ignoring the dependence of material properties (yield strength 𝜎Y , Young’s Modulus411

E), on parameters such as temperature [33]. Including these effects would fall under412

the pointwise conditions, modifying the shape of the feasible domain for each point.413

In addition, in the analysis presented, only simple tractions on the boundary, cycling414

between 0 and a maximum load have been considered. Including other loads, such415

as volumetric loads or temperature gradients is possible but adds significant visual416

complexity. The dimensions required to draw the feasible domains and especially the417

combination of feasible domains for many structures are often too high for visualiza-418

tion and defeat the purpose of these tools for understanding. Nevertheless, revisiting419

this well-established theorem from a graphical and pedagogical approach, provides a420

foundation for new interdisciplinary applications, including identifying pathways for421

incorporation of shakedown in modern structural topology optimization schemes.422

6 Conclusion423

Several graphical interpretations of direct methods that implement Melan’s lower424

bound shakedown theorem have been developed. They serve as educational and sim-425

ple design tools to complement existing Bree Interaction Diagrams. Where Bree426

Diagrams give the domains of expected elastoplastic responses for a structure under427

prescribed loading conditions, the graphical approaches developed here show how428

and why shakedown conditions are met. They provide a graphical representation of429
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18 N. Vermaak et al.

the mathematical processes at the foundation of computational shakedown codes.430

They also provide design insight by highlighting directions for promoting or recov-431

ering shakedown behavior in structures.432
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