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Abstract

Bree Interaction Diagrams have long been one of the major visual design guides for employing and
evaluating shakedown in engineering applications. These diagrams provide representations of the realms in
which elastoplastic behaviors, including shakedown, are found for a material and structure under variable
loads. The creation of these diagrams often relies upon some combination of upper or lower bound
shakedown theorems and numerical shakedown limit determination techniques. Part of the utility of these
diagrams is that, for a given structure and loading conditions, inspecting them is sufficient to determine
whether shakedown will occur or not. The diagrams cannot however, give the designer insight into how the
conditions for shakedown are met. This chapter presents some graphical interpretations of one of the
common methods for shakedown determination: the use of Melan’s Lower Bound Theorem. The intent is
to provide additional insight for designers regarding how shakedown conditions are satisfied. In this way,
additional directions for modifying designs to recover shakedown behavior may also be identified.
Revisiting this well-established theorem from a graphical and pedagogical approach, also provides a
foundation for interdisciplinary innovation. The particular focus is on simple examples that highlight ways
in which Melan’s theorem may be applied to shakedown design problems.
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Some Graphical Interpretations of Melan’s
Theorem for Shakedown Design

N. Vermaak, M. Boissier, L.Valdevit and R. M. McMeeking

Abstract Bree Interaction Diagrams have long been one of the major visual design
guides for employing and evaluating shakedown in engineering applications. These
diagrams provide representations of the realms in which elastoplastic behaviors,
including shakedown, are found for a material and structure under variable loads.
The creation of these diagrams often relies upon some combination of upper or
lower bound shakedown theorems and numerical shakedown limit determination
techniques. Part of the utility of these diagrams is that, for a given structure and
loading conditions, inspecting them is sufficient to determine whether shakedown
will occur or not. The diagrams cannot however, give the designer insight into how
the conditions for shakedown are met. This chapter presents some graphical inter-
pretations of one of the common methods for shakedown determination: the use
of Melan’s Lower Bound Theorem. The intent is to provide additional insight for
designers regarding how shakedown conditions are satisfied. In this way, additional
directions for modifying designs to recover shakedown behavior may also be iden-
tified. Revisiting this well-established theorem from a graphical and pedagogical
approach, also provides a foundation for interdisciplinary innovation. The particular
focus is on simple examples that highlight ways in which Melan’s theorem may be
applied to shakedown design problems.
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2 N. Vermaak et al.

1 Introduction

While shakedown concepts, limit theorems, and numerical methods have been devel-
oped since the 1920s and 1930s [1-5], their widespread acceptance and applica-
tion in engineering design communities remains limited [5]. Some of the factors
that would promote more widespread use of shakedown concepts and limit theo-
rems include improving awareness through educational materials, more experimen-
tal validation efforts, and enhanced communication of shakedown benefits to dif-
ferent design communities. This chapter presents graphical interpretations of shake-
down concepts with the intent to provide additional insight and understanding while
complementing existing graphical shakedown design tools.

Within the context of plastic design under variable loads, shakedown limit the-
orems have been used in applications ranging from: vessels for demilitarization of
munitions [6], tribology [7], multilayer semiconductor devices [8], pavement design
[9, 10], shape memory alloy components [11-13], to nuclear pressure vessels [5].
The theorems delineate the boundaries between reliable and inadmissible behav-
iors [14—17] (see top of Fig. 1). The theorems often replace traditional yield-limited
assessments of structural integrity and can be used in the design process to evalu-
ate a structure’s response to unanticipated loads. The operational space is extended
by allowing shakedown to occur, whereby stresses locally exceed the yield strength
of a material in the first few cycles of load and thereafter, fully elastic response is
recovered.

More generally, the range of possible structural responses is often illustrated
through the use of a Bree Interaction Diagram, which indicates combinations of loads
that lead to various material and structural behaviors. Figure 1 illustrates the classic
Bree diagram for a thin-walled cylinder (with a radius, R and thickness, ¢), subjected
to a fixed internal pressure and a cyclic radial temperature difference [14]. The ordi-
nate is AT /AT, where AT, is the temperature difference required for yield initiation
(oy) in the absence of a mechanical load (ATO =2(1-v)oy /Ea); the abscissa is
P/P, with P, being the pressure that causes yielding in the absence of a tempera-
ture gradient (o-Y =P,R/ t). E, a, v are the material Young’s modulus, coefficient of
thermal expansion, and Poisson’s ratio, respectively. The elastic domain is defined by
P/P, + AT /AT, < 1. At one extreme, wherein P/P, > 1, plastic collapse occurs on
the first load cycle, i.e. the thin wall experiences complete yielding. For intermediate
combinations of P and AT, one of three behaviors is obtained (Fig. 1) [18]. (i) In the
shakedown regime, localized plastic deformation that occurs in the early stages of
cycling gives rise to residual stresses that stabilize the plastic response. Purely elastic
behavior results during any further loading cycles. (ii) Alternating plasticity occurs
by loading beyond the shakedown limit. Here the plastic strain increment obtained
during the first half of each loading cycle is balanced by a plastic strain increment of
equal magnitude but opposite sign during the second half of the loading cycle. No
net strain accrues during each cycle but the structure ultimately fails by low-cycle
fatigue. (iii) Ratchetting refers to the condition in which a net increment of plastic
strain accumulates during each cycle, eventually causing rupture.
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Some Graphical Interpretations of Melan’s Theorem for Shakedown Design 3
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Fig.1 a Prototypical stress-strain behaviors for an elastic-plastic material in the classic Bree prob-
lem and b the corresponding analytic Bree diagram. A cylindrical vessel is subject to constant
internal pressure and a cyclic thermal gradient through the wall thickness

The creation of these diagrams often relies upon some combination of upper or
lower bound shakedown theorems and numerical shakedown limit determination
techniques. The utility of interaction diagrams such as Fig. 1 is immediately appar-
ent; for an engineering application, designers may easily assess the benefits of allow-
ing shakedown to occur. The interaction diagrams cannot however, give the designer
insight into how the conditions for shakedown are met. This chapter presents some
graphical interpretations of one of the common methods for shakedown determi-
nation: the use of Melan’s Lower Bound Theorem under small deformation theory
assumptions (from Koiter [19]):
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4 N. Vermaak et al.

If any time-independent distribution of residual stresses, p ;> can be found such that the sum
of these residual stresses and the “elastic” stresses, a;., is a safe state of stress a;. + pij = ajj,
i.e. a state of stress inside the yield limit, at every point of the body and for all possible
load combinations within the prescribed bounds, then the structure will shake down to some
time-independent distribution of residual stresses (usually depending on the actual loading
program), and the response to subsequent load variations within the prescribed limits will
be elastic. On the other hand, shakedown is impossible if no time-independent distribution
of residual stresses can be found with the property that the sum of the residual stresses and
“elastic” stresses is an allowable state of stress at every point of the body and for all possible
load combinations.

In other words, to assure that a structure will shakedown, one has to find a resid-
ual stress field, p, that satisfies the following three conditions: (i) it has to be self-
equilibrating, (ii) it has to be time-independent, and (iii) it has to remain within the
yield limit when combined with any fictitious “elastic” stress caused by a load com-
bination from the loading domain. This powerful theorem gives a necessary and
sufficient condition to determine if a structure will shakedown or not. One of the
major advantages of this theorem and this kind of “Direct Method” is that informa-
tion about the loading path in an arbitrarily complex loading space is not needed.
Rigorous bounds and shakedown predictions can be made based on purely elastic
solutions or simplified elastoplastic calculations [19-31]. In contrast, the “classical
load history approach” follows the incremental or step-by-step evolution of a system
and finds the actual residual stress field that would result from the actual loading
history that is deterministically known. Direct Methods, which historically devel-
oped out of necessity and without access to computational tools, typically take a
more mathematical approach to predict shakedown response [5]. It should be noted
that “classical incremental or load history approaches” and “direct methods” are not
competing methods, but rather complementary as each provides different informa-
tion and functionality and they often have separate domains of applicability. For
example, direct methods avoid cumbersome incremental load-history based calcu-
lations and are especially useful when the exact loading history within a domain
is unknown. Whereas the load-history based approaches provide the often crucial
evolution of local quantities.

Several versions of proofs of Melan’s lower bound theorem can be found in the
literature [19-21, 32] and many extensions of this theorem have been made to ana-
lyze temperature or time-dependent properties, creep, damage, and others [5, 33,
34]. Many ways to implement Melan’s theorem to determine shakedown behav-
ior or shakedown limit loads have also been developed; see Weichert and Ponter
[5] for a broad historical survey. One way to think about the techniques for lower-
bound shakedown determination is by emphasizing “any” in the first part of the
limit theorem (“If any time-independent distribution of residual stresses, p;;, can
be found...”). How could one find appropriate residual stress fields? Direct methods
exploit the mathematical freedom available by searching for “any” residual stress
field that meets the specified shakedown conditions; to do this, direct methods use a
variety of procedures from graph theory to optimization [22, 35-43].
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Some Graphical Interpretations of Melan’s Theorem for Shakedown Design 5

In this work, two different direct method implementations of Melan’s theorem for
shakedown determination are considered. The goal is to illustrate graphically what
is mathematically determined when an admissible residual stress field, p, is sought
and the conditions for a structure to shakedown are met. The graphical interpreta-
tions also provide a way to understand the role of key parameters and features in the
shakedown determination process. Revisiting this well-established theorem from a
graphical and pedagogical approach, also provides a foundation for interdisciplinary
innovation. In the following, Sect. 2 will present the background and assumptions of
the problems analyzed. Sections 3 and 4 present several examples. Discussion of the
assumptions and limitations is presented in Sect. 5 and followed by conclusions.

2 Setting of the Problem

Consider an elastic-perfectly-plastic solid, €, under small deformation theory
assumptions. Its boundary, 0€2, characterized by its normal, n, can be described in
parts (Fig. 2): €2, is the part of the boundary on which displacement is imposed,
0Q; is the part of the boundary on which any traction, F, from the prescribed load-
ing domain, L (Fig. 3), could be applied, and I" is the part of the boundary that is
traction-free. These parts satisfy the conditions:

0Q = 0Q, U 0Q, UT,

0Q, N 0Q =0, 0Q,Nal = ¢, 0Qr Nl =@. M
In the following, a constant scalar yield stress, oy, is considered and a von Mises yield
function, f, is adopted. As a result of a load, P, applied to a solid, €2, on the part 02,
two types of stresses will be distinguished: (i) the actual stresses, 65 ey these are the
elastoplastic stresses that would be caused by the load (under the elastic-perfectly-
plastic model); (ii) the fictitious “elastic” stresses, 65 e these are the stresses that

would be caused by the load if the response were purely elastic.

Fig. 2 Schematic of ol a -0-0

structure and problem n ')ﬁ - .
parameters y X/

r/ Q \
L 90
|. +
ﬂ % Fa g
k et > ///
R
n
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Fig.3 Loading domains, L
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Lastly, the loading domain, L, assumed (Fig.3) contains every possible load-
ing combination for the loads applied to the solid. By assuming that L is a con-
vex N-dimensional polyhedron [44], it is possible to define the loading corners,
F;, (i € [1,NC] where NC is the number of corners) of the loading domain, and
every loading path that connects one corner to another will remain inside the load-
ing domain. Note that all problems considered involve loading by tractions, forces or
displacements and no thermal stresses are considered. We therefore keep tempera-
ture constant and uniform throughout the examples presented. As a result, two types
of loading domains, L, can be considered: only cyclic loads and combined cyclic
and constant loads (Fig. 3). For example, at the bottom of Fig. 3, a combined cyclic
and constant loading domain is illustrated. It is composed of the loads Q(¢) (cycling
between O, and Q,) and 7'(¢) (cycling between T, and T,). It should be noted that for
this analysis, the constant load, P, will be restricted to cause purely elastic response
in the structure, so that the actual stress it causes is equivalent to the fictitious “elas-
tic” stress.

For the remainder of this work and using the translations and adaptations of Koi-
ter, Symonds, and Konig [3, 4, 19, 20, 32], the following formulation of Melan’s
lower bound shakedown theorem is adopted: A solid, Q (Fig. 2), which is subjected
to any cyclic traction F, from the loading domain L, (Fig. 3) on a part 0Qp of its
boundary 0Q, will shakedown under this loading domain if one can find any resid-
ual stress field, p, which:
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Some Graphical Interpretations of Melan’s Theorem for Shakedown Design 7

e Condition 1 (spatial) is self-equilibrating, meaning that its divergence over the
solid, €, is zero and the field satisfies the prescribed traction-free conditions on
the solid’s boundary, 0Q U I" (with the normal, n, Fig. 2) [21]:

divip)=0 in Q, )
p-n=0 on 0QpUT.
o Condition 2 (pointwise) is time-independent, meaning that its value at each point
does not depend on the applied loading corner, F; (Vi € [1, NC]), in the loading
domain L, (note that p, is the field corresponding to loading corner, F}):

vi € [1,NC], p;=p. 3)

 Condition 3 (pointwise) will generate a safe state of stress at each point, x, in the
solid (x € Q) when it is added to a fictitious “elastic” stress aeF" " associated with

any of the loading corners, F; (Vi € [1, NC]), in the loading domain L. For a yield
function, f, and a yield stress, oy, this gives:

VieQ Vie[LNC],  f(p)+o,;,(x).0p) <O. @

The conditions have been labeled as pointwise or spatially-dependent (spatial) to
highlight differences for use in the following sections. Unlike Conditions 2 and 3
which only have to be satisfied at each point, Condition 1 links all of the points in
the solid together through the divergence term and the boundary conditions.

3 Graphical Interpretations of Shakedown Determination
with Simplified Elastoplastic Analysis

One approach to finding appropriate residual stress fields for use in Melan’s theorem
is to use simplified elastoplastic analysis [22-31]. Instead of incrementally follow-
ing an entire cyclic loading history, a single elastoplastic analysis for one cycle that
includes both loading and unloading could be used to calculate a representative resid-
ual stress field, p, developed in a solid, Q. Then, the residual stress field, p, is checked
so that when it is added to the fictitious “elastic” stresses that would be caused by
the same loading process, the sum will remain below the yield level. For more than
one cyclic load application (or more than one cyclic load combined with constant
loads), the time-independent condition (Eq. 3) is not automatically satisfied. For the
following examples, simplified two-corner loading domains (Fig. 4) will be used so
that only one path—the one connecting the two corners—has to be analyzed.

In this shakedown determination with a simplified elastoplastic analysis approach,
a first step is to compute the residual stress field from loading and unloading the solid,
and verify that the self-equilibrating condition is met (Eq. 2). First, the constant load,
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Fig. 4 Loading domain

—l——*—»—*—b P(t)

P+ AP

P, is applied‘ this elicits an actual stress which is also the fictitious “elastic™ stress
(Sect.2): 6* At this stage, the load applied to the structure is the load

actual U

efict’
corresponding to the first loading corner, P=F 1- Then, the cyclic load AP is applied
and the structure is fully loaded (the sum of the constant load, P and the extremum
value of the cyclic load, AP). This corresponds to the second loading corner, F,. The

5 :;ﬁf; , is now different from the fictitious “elastic” stress, o-P;AtP This new

P ;?P , can be related to the stress caused by the constant

load, o” ¢+ e (inearly elastic): O'P;LAIP o, /u ol
The remdual stress field, p, is computed by completely unloading the solid: the

stress, ¢

ﬁctitious “elastic” stress, o

total fictitious “elastic” stress, GS;CA;P is subtracted from the total stress, 65 AR
_ P+AP _ _P+AP
P =0 nal efict * o)

The residual stress field, p, by definition, is automatically self-equilibrating as

demonstrated in the following. The stress field, o/ *4/"

load P + AP, satisfies the equilibrium equations (see Fig. 2):

resulting from the applied

div(o-FJrAP) =0 inQ

actual

GPHAP Q—P+AP on 0Qp (6)

aLtuul
PP =0 onT
actual —

P+AP
efict ’
stress induced by the same loading, P+ AP, but assuming purely elastic behavior:

The fictitious “elastic” stress field, o, satisfies the same equations, as it is the

div(aT#27) =0 in Q

ol n =P+ AP on 0Q; (7)

O'i;ﬁp n=0 onTl
Since the divergence and the scalar product are linear operators, the nullity of the

divergence of the residual stress field and the traction-free conditions are ensured
by:
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Some Graphical Interpretations of Melan’s Theorem for Shakedown Design 9

div(p) = div(cT*2F) — div(cT+2F) =0 in Q

actual e fict
_ P+AP _ P+AP _ _p _
P N=0yy =0, "N=P+ AP =0 on 0Qp (8)
_ PHAP _ _P+AP . _
P =0, Ge,ﬁct n= 0 onl

As the solid, Q, is elastic-perfectly-plastic, the stress, o’ 2 cannot go beyond
the yield limit. One only needs to check that the residual stress field is “safe”’, mean-
ing that at each point, the residual stress remains below the yield level. In order to
illustrate this approach for shakedown determination and gain more insight from a

design perspective, a graphical interpretation is presented.

3.1 Example for Combined Cyclic and Constant Loading

Consider a two-component stress state and a von Mises yield function represented
as a circle in a S}, S, plane. In this plane, adding and removing stresses can be rep-
resented by adding and subtracting vectors; S, S, are stress components and the
plane is not necessarily in principal stress axes. Once the stresses, o-li 1 &)> TEACh
the yield limit, they remain at yield on the circle until unloading. For the illustrations
presented, only abstract schematic representations are used.

It has been shown above that the residual stress is self-equilibrating. Before con-
sidering the following step, a modified stress field, p, is defined for convenience as
the sum of the residual stress field (p, Eq. 5) with the fictitious “elastic” stress caused
by the constant load only, 05 .- This stress is the one remaining in the solid, €, after
only unloading the cyclic load AP:

p=p+ol,, ©)

The time-independence condition is also automatically satisfied. Once computed, the
residual stress (p, Eq. 5) will not change. Finally, the safe-state condition has only to
be checked for the loading corners, at each point, x, in the solid. For F; = P:

VieQ  f(p@)+ol,,x).0p) <0 (10)
and for F, = P+ AP:

VrieQ  f(pw)+atArw).0y) =f(olt B w.0y) <0 (11)
Equation 11 is automatically satisfied because the solid is elastic-perfectly-plastic.
From this point, the safe-state condition must be checked for the modified stress
field, p, (Eq.9).
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GFo=PHoP
53 S ﬁ e.fict
Fa=P+AP
. :pae.ficr cyclic load
cyclicload I AP
AP . T fict
ge.ﬂct
Fa=P+AP
actual
Fy=P+aP
actual
5 5y

P

unload

| S P
P b_.pb'l”oe.ﬁct

Fig. 5 Schematic illustration of direct method shakedown determination using simplified elasto-
plastic analysis. For a two-component stress state at a point (x), and for a combined cyclic and
constant loading case (Fig. 4): shakedown is possible (on the left); shakedown is not possible (on
the right)

For a two-component stress state at a point x, Fig. 5 illustrates cases where shake-
down is and is not possible. If shakedown is not possible at a single point in the
structure, shakedown is prevented for the entire structure. In these figures, the thin
solid lines represent the elastic stresses that result from the applied constant load
(aéD et ({) ). Following the application of the constant load, an additional cyclic load is
then applied and the resulting fictitious “elastic” stresses are shown by the sparsely-
dotted (o-e et ( )). The actual elastoplastic stresses are depicted by thicker dashed

ah

lines (5,*"  (x)) and overlap both the sparsely-doited and thin solid lines within the
elastic domam. The thick dashed lines for the actual elastoplastic stresses follow the
yield surface (circle) when the yield limit is reached and the load is increased. Upon
unloading (elastically) the ﬁctitious “elastic” stress is subtracted from the actual

elastoplastic stress (aa;‘t‘; (%) =0 49 (x)). Note that only the cyclic load (and the
associated fictitious “elastic” stresses) is removed and the constant load still remains.

This process is represented by the densely-dotted l1ne (aunloa J ( )). The thick solid

lines show the modified stresses p (x) = p (x) + oL ., (). (Eq.9). One could argue
that although the residual stress found in this way is not necessarily one that allows
for shakedown to occur, it could still be possible to find another residual stress that
would allow for shakedown. However, the particularity of this approach is that it
gives the actual residual stress field that would be caused by the loading and unload-
ing process. If this residual stress field does not allow for shakedown, then the struc-
ture will not shakedown. In this versatile approach, a natural ordering of the steps
to check the shakedown conditions is suggested by following the physical processes
of loading and unloading that the structure experiences. Many other approaches are
even more divorced from physical processes and exploit the mathematical freedom in
Melan’s theorem. Nevertheless, following this process could provide valuable insight
for designers regarding how to recover or promote shakedown behavior.
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Some Graphical Interpretations of Melan’s Theorem for Shakedown Design 11

4 Graphical Interpretations of Shakedown Determination
with Purely Elastic Analysis

An example of a more mathematical implementation of Melan’s theorem uses set
theory and can consider the shakedown conditions simultaneously. This kind of
approach can also be used to identify new pathways to incorporate shakedown the-
orems in modern structural topology optimization protocols [45-49]. For the fol-
lowing example, a solid Q (Fig.2), and a cyclic loading domain, L, that includes
0 as a loading corner are analyzed (Fig. 3). For ease of understanding, the “point-
wise” (time-independence and safe-state) shakedown conditions (Sect.2) are pre-
sented together; the “spatial” (self-equilibrating) condition is applied last.

For each point, x, in the solid (x € Q), a feasible stress domain (for this point),
f.d.(x), must be found, i.e. all of the stresses 5(x) that, for all loading corners F;
(Vi € [1,NC]), satisfy the safe-state condition. The stresses, 5(x), are also time-
independent because they are load-independent: they do not depend on the loading
corner and remain the same for the whole loading domain, L. Note that the new
variable, 5(x) is defined for convenience to distinguish stresses that only satisfy the
pointwise shakedown conditions (5(x)) from those that satisfy both the pointwise
and spatial shakedown conditions (admissible residual stress fields, p). Then, for a
point in the solid (x € ), the feasible stress domain (which will be called a feasible
domain from now on, f.d.(x)), is composed of the stresses, 5(x), satisfying:

F;

Vie [LNC],  fGw)+o,p,

(x),0y) <0. (12)

For each point, the feasible domain f.d.(x) can be represented in a stress coordi-
nate system (Fig. 6). Care should be taken to ensure that the same stress coordinate
system is used for all of the loading corners. Moreover, the stress coordinate system
must also remain the same for the feasible domains at every point in the solid. As a
result, the feasible domains, f.d.(x), are not necessarily determined in principal stress
axes as principal stress components depend on the applied loading and they may not
be the same for each loading corner and each point in the solid.

With a feasible domain for each point in the solid, combining these domains in
space will limit the admissible stress fields. The combination of feasible domains
(f.d.(x)) gives a “feasible stress field domain” (for the entire structure). It is done in
a space of dimension (number of stress components) + (number of spatial dimen-

Fig. 6 Schematic of a 52

feasible domain for a point,

f.d.(x), with feasible stress

values. Left example for a f.d.(x)

single stress component. f I $y P
. f.d{(x)

Right example for a

two-component stress
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Sz

Fig. 7 Schematic illustration of the variation of feasible domains at various points in a structure.
Each feasible domain, f.d.(x), is drawn at the spatial coordinates of the point in the structure and
extends along stress component axes (S}, S,). The representation of an admissible stress field, p,
in the space of dimension (number of stress components) + (number of spatial dimensions) must
remain within the boundaries set by the variation of feasible domains in the solid (i.e. the feasible
stress field domain). Two possibilities for p are given: the example with the solid line (p,) belongs
to the feasible stress field domain whereas the example with the dotted line (p,) does not

sions): one axis for each stress component and one axis for each spatial direction. In
this space, the feasible domain for each point (x), is drawn at the spatial coordinates
of the point in the solid and extends along stress component axes (Fig. 7).

To meet both the pointwise and spatial conditions (Eqs. 2—4, Sect. 2), an admis-
sible stress field, p, is found in the intersection of the self-equilibrating stress fields
and the feasible stress field domain. Thus, the representation of an admissible stress
field, p, in the space of dimension (number of stress components) + (number of spa-
tial dimensions) must remain within the boundaries set by the variation of feasible
domains in the solid (i.e. the feasible stress field domain) (see schematic in Fig. 7).
For ease of visualization, only the satisfaction of the divergence equation is shown;
additional boundary conditions would further limit the admissible fields, p, within
the feasible stress field domain. This “intersection of domains” approach is useful
for both understanding and designing to shakedown. Modifications of the material,
geometric, and problem parameters will change these two domains: reducing, enlarg-
ing, translating them and affecting the size and existence of the intersection zone in
which the admissible residual stress fields, p, reside.

4.1 Example for only Cyclic Loading

To schematically illustrate this kind of implementation of Melan’s theorem, a four-
corner cyclic loading domain, L (Fig. 3), is used. The simplified example assumes
a linear yield function, f, and a one-dimensional structure, €2, that experiences a
single-component stress. To represent this problem in a continuous way, one would
have to consider the pointwise shakedown conditions (Eqgs. 3 and 4) at each point in
the solid. In this example, only three points (x;, x,, x3) are analyzed. The fictitious
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Fig. 8 Feasible domain (f.d.) for point x;

“elastic” stresses caused by the loading corner (F|, F,, F5,or F, = 0), for these points
in the structure are ae e (K1) P (x;), and a: ().

A schematic case where sﬁakedown is p0551ble is illustrated. The feasible
domains, f.d.(x), at each point in the solid (x € Q) must be computed (Figs. 8, 9
and 10). These computations rely on analytical elasticity solutions or on approxima-
tions using finite element analysis. For the examples below, only abstract schemat-
ics are presented. The safe-state condition has to be satisfied for all four loading
corners (F,, F,, F5, F, =0). The feasible domain for the points analyzed in the
structure (xy, x,, x;) is determined when the sum of the fictitious “elastic” stresses,
Uj}u . f;c . Z;u 1 Oy piey a0d 5(x) (Eq. 12) remain elastic.

Within each of the Figs. 8,9 and 10 (and for each corresponding point x;, x,, X3),
there are several linear plots: one indicating the feasible domain for each of the load-
ing corners (F, F,, F;, F, = 0) and a final plot that shows the feasible domain for
the point (x;, x, or x3), which is the intersection of all of the feasible domains for
each of the loading corners. The fictitious “elastic” stresses are computed for each

'é: 340845_1_En_11_Chapter [/] TYPESET [_|DISK []LE [/]CP Disp.:25/5/2017 Pages: 21 Layout: T1-Standard




Author Proof

14 N. Vermaak et al.
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Fig. 9 Feasible domain (f.d.) for point x,

loading corner and are represented by dashed vectors along linear stress continuums.
These plots also illustrate the yielding limits (using a von Mises function f(c) = o)
in tension (¢ = oy) and compression (¢ = —oy). The feasible domain (f.d.(x) for
F,) is represented by thick black lines. This domain is the translation of the elas-
tic domain ([—oy, oy]) by the fictitious elastic stress (— o ﬁ (), i.e. in the opposite
direction and with the same magnitude. This translation is shown by the dotted lines
at the boundaries of the elastic domain. Note that for the loading corner F, = 0, (no
external loading), there are no associated fictitious elastic stresses and the translated
elastic domain is the original elastic domain.

Combining the final feasible domains in space for each point in the structure
(x € Q)—for example, placing them side by side along a spatial axis, allows one to
visualize the limitations on the feasible stress field domain (Fig. 11). For the exam-
ple presented here, it is assumed that, for points between those considered, the limits
of their feasible domains will also fall linearly between the determined limits. For
more general problems, finite element approximations and mesh sensitivity stud-
ies are needed. With Fig. 11, the self-equilibrating condition can be applied to find
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Fig. 10 Feasible domain (f.d.) for point x;

the admissible stress field, p, (i.e. enforcing the nullity of the divergence and the
traction-free state on the part of the boundary 0Q2, U T'):

ap(x)
ox

div(p) = =0 inQ, = p=constant inQ. (13)
For this example, the divergence equation requires one to find a constant function,
p, which, for each point of the solid (x € €), would remain in the feasible domain:

IpER st VXEQ,  pkx)=pefd(n), (14)

The self-equilibrating shakedown condition (Eq.2) does not always require a con-
stant residual stress field p (Fig. 7).

Figure 11 shows that, for this schematic example, one can find some shakedown
solutions (on the left, in the middle). In this way one assures that the whole structure,
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p=fp) p=1fp) p=1p)
ay T ay 1 oy T
oy /21 ay /24 oy /24
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Fig. 11 Left feasible stress field domain from the combination of each point’s feasible domain.
Middle the same feasible stress field domain is shown with the self-equilibrating condition that
indicates shakedown is possible. Right example of a possible feasible stress field domain where the
intersection with the self-equilibrating fields is empty and shakedown is not possible

Q, will shakedown under the applied loading domain, L. In contrast, one can imagine
an alternative scenario for which there is no constant function (i) that will satisfy the
self-equilibrating condition and (ii) that is also a member of the feasible stress field
domain; thus shakedown is not possible (Fig. 11, on the right).

This example highlights several factors that could prevent shakedown for a struc-
ture; these factors present design opportunities to recover shakedown behavior. An
empty feasible domain for a single point in the structure will prevent shakedown for
the entire structure (the feasible domain for point x; in Figs. 8 and 9 could have been
empty and then shakedown would not be possible for the structure). The feasible
domain for a point may be empty due to the magnitude of stress levels associated
with a single loading corner (i.e. greater than 2oy in this example), or because the
combination of feasible domains for each loading corner yields an empty set when
combined for the final feasible domain determination at a point. Shakedown may
also be prevented due to an empty feasible stress field domain. This failure relates to
the “spatial” self-equilibrating shakedown condition: in these examples, the condi-
tion requires one to find a constant function that would remain in the feasible domain
for every point in the solid (Fig. 11). As a lower bound for a structure, if it is found
that shakedown is not possible for a loading corner within a given loading domain,
L, then shakedown is also not possible for the entire loading domain.

For this kind of implementation of Melan’s theorem, an example has been given
to illustrate the set theory approach. It is a search for the intersection of stress fields
that are admissible from pointwise and spatial-condition perspectives. It should be
again emphasized that this kind of implementation does not require any elastoplastic
analysis, it is based purely on elastic solutions. However, it will not provide infor-
mation about the residual stress state, p, that actually exists in the solid. Indeed, the
uniqueness of the residual stress field is derived from the load history [19] which is
not considered in direct methods.
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5 Discussion

The graphical interpretations and approaches presented for some implementations of
Melan’s Lower Bound Shakedown Theorem offer tools for deeper understanding and
for making design choices. The mathematical processes used in methods for shake-
down determination are often buried in computational codes. However, as is the case
with many graphical representations in 2D and 3D, their practical utility is limited
and the graphical tools presented are not intended to replace other tools nor are they
recommended for complex geometries or loading domains. Nevertheless, the graph-
ical tools offer complementary information to traditional Bree Interaction Diagrams.
Bree diagrams give bounds for elastoplastic responses (including shakedown) under
prescribed loading combinations but they do not indicate how shakedown condi-
tions are met. By elucidating how pointwise and spatial shakedown conditions are
met, directions for promoting and recovering shakedown behavior that are not indi-
cated in the Bree Diagrams may be highlighted. These may include modifications
of the material, geometry, and boundary conditions. Even for obvious changes such
as increasing the material yield strength, interaction diagrams will give the revised
shakedown domain, but the graphical approach and interpretations presented here
allow one to see how and why this parameter influences the shakedown domain from
a lower-bound perspective.

In the previous examples, several simplifying assumptions were made such as
ignoring the dependence of material properties (yield strength oy, Young’s Modulus
E), on parameters such as temperature [33]. Including these effects would fall under
the pointwise conditions, modifying the shape of the feasible domain for each point.
In addition, in the analysis presented, only simple tractions on the boundary, cycling
between 0 and a maximum load have been considered. Including other loads, such
as volumetric loads or temperature gradients is possible but adds significant visual
complexity. The dimensions required to draw the feasible domains and especially the
combination of feasible domains for many structures are often too high for visualiza-
tion and defeat the purpose of these tools for understanding. Nevertheless, revisiting
this well-established theorem from a graphical and pedagogical approach, provides a
foundation for new interdisciplinary applications, including identifying pathways for
incorporation of shakedown in modern structural topology optimization schemes.

6 Conclusion

Several graphical interpretations of direct methods that implement Melan’s lower
bound shakedown theorem have been developed. They serve as educational and sim-
ple design tools to complement existing Bree Interaction Diagrams. Where Bree
Diagrams give the domains of expected elastoplastic responses for a structure under
prescribed loading conditions, the graphical approaches developed here show how
and why shakedown conditions are met. They provide a graphical representation of
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the mathematical processes at the foundation of computational shakedown codes.
They also provide design insight by highlighting directions for promoting or recov-
ering shakedown behavior in structures.
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